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Three different approaches were used in the present study to predict the influence of
roughness on laminar flow in microchannels. Experimental investigations were con-
ducted with rough microchannels 100 to 300 µm in height (H ). The pressure drop
was measured in test-sections prepared with well-controlled wall roughness (perio-
dically distributed blocks, relative roughness k∗ = k/0.5H ≈ 0.15) and in test-sections
with randomly distributed particles anchored on the channel walls (k∗ ≈ 0.04–0.13).
Three-dimensional numerical simulations were conducted with the same geometry
as in the test-section with periodical roughness (wavelength L). A one-dimensional
model (RLM model) was also developed on the basis of a discrete-element approach
and the volume-averaging technique. The numerical simulations, the rough layer
model and the experiments agree to show that the Poiseuille number Po increases
with the relative roughness and is independent of Re in the laminar regime
(Re < 2000). The increase in Po observed during the experiments is predicted well
both by the three-dimensional simulations and the rough layer model. The RLM
model shows that the roughness effect may be interpreted by using an effective
roughness height keff . keff /k depends on two dimensionless local parameters: the
porosity at the bottom wall; and the roughness height normalized with the distance
between the rough elements. The RLM model shows that keff /k is independent of
the relative roughness k∗ at given k/L and may be simply approximated by the law:
keff /k = 1 − (c(ε)/2π)(L/k) for keff /k > 0.2, where c decreases with the porosity ε.

1. Introduction
The present study is devoted to the problem of laminar flow in rough-wall

microchannels. According to the classical point of view, the surface roughness does
not influence the laminar regime of flows in ducts of conventional size. However,
significant departures from classical theory have been observed in many works on
laminar flows in microchannels during the last two decades. Reviews can be found
in Papautsky et al. (1999), Sobhan & Garimella (2001), Morini (2004) and Sharp &
Adrian (2004). Among the possible reasons for these deviations, the surface finish of
the channel walls has been suspected of playing an important role in the hydrodynam-
ics of microchannels. Recently, precise experimental works on smooth microchannels
partly clarified this issue. Judy, Maynes & Webb (2002), Phares & Smedley (2004),
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Author Channel geometry Relative roughness Results Remarks

Mala & Li Stainless steel and k/Dh = 0.007–0.035 Poexp/Posmooth =1.1 Fully developed
(1999) fused silica tubes for Re < 1000 flow conditions,

Dh = 50–254µm Poexp increases with k not measured
Re for Re < 1000 (given by)

manufacturer

Li et al. Stainless steel tubes k/Dh =0.03–0.043 Poexp/Posmoothup k average height
(2003) Dh =128.8– to 1.37 of roughness

179.8 µm Poexp increases profile
with Re

Pfund et al. Rectangular k/Dh = 0.0075 Poexp/Posmooth = k , kmax average
(2000) microchannel kmax/Dh = 0.028 1.25 and maximal

Dh =256–1042 µm Semi-rough channels heights of
Aspect ratio (smooth side + roughness

Dh/W = rough side) profile
0.0250−0.1042

Shen et al. Rectangular k/Dh = 0.04–0.06 Poexp/Posmooth =1–3 Definition of k

(2006) microchannel Re =200–1300 not specified
300 × 800 µm2

Qu et al. Trapezoidal k/Dh = 0.012–0.017 Poexp/Posmooth = Definition of k

(2000) microchannels Semi-rough channels 1.08–1.3 not specified
Dh = 51–169 µm (smooth cover Poexp increases

plate) with Re

Wu & Ping Trapezoidal k/Dh = 0.006–0.01 Poexp/Posmooth = Developing flow
Cheng microchannels Semi-rough channels 1.06–1.2 Definition of k

(2003) (no. 9–10) (smooth cover Re =100–1000 not specified
Dh =70–143µm plate)

Kandlikar W = 10.03 mm Two-dimensional Aligned: The flow may be
et al. (2005) Dh =325–1819µm sawtooth ridges in Poexp/Posmooth = calculated with

aligned and offset 2.65–3.5 the constricted
arrangement Offset: flow area

k/Dh = 0.0735 Poexp/Posmooth = Hr = H − 2k

Distance between 2.12–3
roughness Re =210–630
elements

L =500 µm

Table 1. Summary of experimental works on rough microchannels in the literature.

Bavière et al. (2005) and Kohl et al. (2005), among others, have shown that for
smooth-wall microchannels, the friction factor does not depart from conventional
values for laminar liquid flows up to Reynolds number of about 2000 where the
transition to turbulence occurs. These studies have demonstrated that the classical
continuum model (conventional mass, Navier–Stokes equations) is relevant for liquid
flows in smooth microchannels with height as low as about 5 µm.

Some authors have experimentally attempted to separate the influence of roughness
on the friction factor from other effects such as those due to entrance, cross-section
shape and fluid properties (table 1). The relative roughness is normalized with the
hydraulic diameter Dh. Figure 1 shows the experimental data of the three experimental
studies that correspond to a basic duct cross-section (round microtube: Mala & Li
1999; Li, Du & Guo 2003; rectangular microchannel: Pfund et al. 2000). The Poiseuille
number (Po = f Re, where f is the Fanning friction factor and Re is defined with
the bulk velocity and Dh) is normalized with the value corresponding to a smooth
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Figure 1. Comparison of the Poiseuille number for rough microchannels. FST, fused silica
microtubes; SST, stainless steel microtubes.

channel. The results show that the surface roughness increases the resistance to the
flow. Shen et al. (2006) also obtained a very large increase in Po for rectangular
microchannels, but this was most probably due to the entrance effect so their results
are not plotted in figure 1. In Mala & Li (1999), the inlet and outlet pressure losses
were eliminated by the experimental procedure. The pressure drop was measured at
constant flow rate for two tubes which were identical except of different lengths.
Combining the two sets of data then eliminated the inlet and outlet extra pressure
losses. No results were given for smooth microtubes so that a comparison with the
reference flow in such tubes and the same experimental loop was not achieved in this
study. Li et al. (2003) also performed experiments with deionized water in glass, silicon
and stainless steel microtubes. They contrasted the behaviour of smooth glass and
silicon microtubes, where the Poiseuille number was consistent with the conventional
value for macrotubes, with that of rough stainless steel microtubes, where a significant
increase was found for Po. Pfund et al. (2000) measured the pressure drop in deionized
water flow across high-aspect-ratio rectangular microchannels made in a sandwich
structure. Since the test section could be easily assembled and disassembled, they were
able to vary the microchannel height by changing a spacer between the same channel
walls and also to perform profilometry of the wall surface. When one of the walls of
the 257 µm high test section was a rough polyamide plate, Po exhibited a significant
increase (∼25 %) above Posmooth. The trends shown in figure 1 were also found in
microchannels with trapezoidal cross-section etched in a silicon substrate (table 1).
Wu & Ping Cheng (2003) conducted experiments with a large series of trapezoidal
silicon microchannels of different roughness. The reported results show an unexpected
increase in Po even for very small values of roughness. It is possible that the data
were influenced by uncertainties in the channel dimensions or contain other effects,
which obscure the influence of surface roughness.

This brief review shows that the influence of relative roughness and Reynolds num-
ber is not clearly elucidated by experiments. The accuracy in measured microchannel
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dimensions obviously plays a crucial role in the experimental uncertainty. It is worth
underlining that Po depends to the power four on the tube diameter and to the
power three on the channel height so that uncertainties in these dimensions strongly
influence the measured Poiseuille number. Another experimental difficulty concerns
the characterization of rough walls. In particular, the question arises of where the
reference surface is located. This issue was discussed by Kandlikar et al. (2005).
Contrary to the well-controlled experiments performed in conventional tubes, the
surface of microchannels in certain conditions of etching is more like a bumpy
and ridged irregular surface than a smooth surface covered with sand grains as in
the experiments of Nikuradse (1933). This obviously results in uncertainty in the
hydraulic diameter of the test section for microchannels etched with this method.

Various models have been proposed for accounting for roughness effects in laminar
flows. For the extreme situation of a very compact arrangement of rough elements, the
roughness region may be considered as impermeable to the flow so that the flow may
be calculated with a reduced flow area obtained by subtracting the roughness height
from the total cross-section. This simple model may also be relevant in some cases
for two-dimensional rough elements. For example, Kandlikar et al. (2005) conducted
experiments in a 10.03 mm wide rectangular channel with variable gap. The rough
elements were parallel sawtooth ridges 73 µm in height, placed 500 µm apart normal
to the flow direction in aligned and offset configurations. The authors showed that the
conventional law for Po is recovered in the laminar regime when the hydraulic dia-
meter and the theoretical friction factors are calculated with the constricted flow area.

Perturbation methods have been used for computing the flow over two-dimensional
wavy walls (Hocking 1976; Tuck & Kouzoubov 1995; Stroock et al. 2002). In this ap-
proach, a modified slip boundary condition can be used on a reference plane instead of
the physical no-slip condition on the actual surface. Stroock et al. (2002) equivalently
introduced an extrapolation length that defines the plane where the no-slip condition
must be satisfied. Sarkar & Prosperetti (1996) presented an approximate analysis
for a sparse distribution of arbitrarily shaped protrusions. Another approach was
proposed by Mala & Li (1999) who introduced a roughness viscosity model in order
to interpret their own experimental data. The increase of momentum transfer due to
roughness was modelled by the addition of an empirical roughness viscosity to the
fluid molecular viscosity: µeff =µ + µR . It was assumed that the roughness viscosity
µR has maximum value near the wall and vanishes gradually towards the channel
centre. In this model, the roughness viscosity depends on the Reynolds number to
account for the inertial effects observed in the experiments. Koo & Kleinstreuer (2003)
also proposed another approach by modelling the near-wall region as an equivalent
porous medium layer. They were able to reproduce the measurements of Mala & Li
(1999) and Guo & Li (2003) by adjusting the permeability of this layer. Bavière et al.
(2006) used an analytical approach derived from the porous medium layer model.

The above review reveals the difficulties encountered in the investigation of
roughness effects in microchannel flows. This is why numerical simulation may be
a useful way of analysing these effects. The well-defined geometry of the numerical
model eliminates the uncertainty inherent in measurements. Moreover, secondary
phenomena such as the entrance effect or viscous heating can be easily eliminated.
Several authors carried out numerical computations in microchannels with rough
elements periodically distributed on a smooth surface (table 2). All these studies
found that Po increases with the roughness height. Contrary to the experiments, Po
was found to be independent of Re, except in Croce & D’Agaro (2004), who found that
Po slightly increases with Re, especially for the highest values of roughness element
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Range of Reynolds
Author Roughness geometry Relative roughness number Channel geometry

Hu et al. (2003) Three-dimensional k/Dh =0–0.2 0.002–20 Plane channel
rectangular prism
elements

Bavière et al. Three-dimensional k/Dh =0–0.15 1–200 Plane channel
(2006) rectangular prism

elements

Croce et al. Conical elements k/Dh =0–0.026 100–1500 Plane channel
(2005)

Croce & Two-dimensional k/Dh =0–0.053 100–1600 Plane channel
D’Agaro (2004) rectangular or and circular tube

triangular elements

Wang et al. Two-dimensional k/Dh = 0–0.1 0–300 Plane channel
(2006) rectangular,

triangular,
elliptical elements

Table 2. Summary of numerical works on rough microchannels in the literature.

height. Hu, Werner & Li (2003) and Bavière et al. (2006) considered two-dimensional
microchannels with three-dimensional rectangular prism elements placed on the walls.
They expressed the roughness effect on the pressure drop across the channel as
a relative channel height reduction depending on the roughness element geometry.
Bavière et al. (2006) used the same geometrical arrangement as that of Hu et al. (2003)
and found good agreement with these authors for the effective channel height. In their
study, the Re range was extended compared to that used by Hu et al. (2003). They
also analysed the contribution of drag forces and viscous stresses on rough elements
to the pressure drop. Croce et al. (2005) carried out similar computations for conical
rough elements placed on the wall. They observed the effect of the cone steepness at a
given geometrical obstruction parameter. Croce & D’Agaro (2004) and Wang, Yap &
Mujumdar (2005) considered two-dimensional roughness elements of different shapes.
In the first study, the elements were placed regularly or randomly on the wall. The
results indicate that the flow field is characterized by a strong recirculation region
developing behind the roughness elements. Croce & D’Agaro (2004) obtained a very
large increase in Po ( ≈ 100 %) for the highest value of the relative roughness (0.053).

The above presentation shows that roughness effects on microchannel flows are at
present not well characterized. There are few well-documented experimental studies
on this subject. Roughness effects may be obscured by large uncertainties in the
measurements and other effects present in microchannel flows. Some issues remain
open, such as whether the Poiseuille number changes with the Reynolds number or
about the most significant factors which influence the resistance to the flow.

The current work is focused on fully developed laminar flow through rough
microchannels. It combines numerical and experimental approaches to clarify the
roughness effects in these flows. A test section with a three-dimensional periodic
pattern of rough elements was built and tested. The same geometry was considered in
a numerical computation of the flow. A one-dimensional model was also developed
for accounting wall roughness in microchannel flows. To the best of our knowledge,
it is the first time that such a well-defined rough surface was used in an experimental
approach of microchannel flows and compared to a numerical model.



404 G. Gamrat, M. Favre-Marinet, S. Le Person, R. Bavière and F. Ayela

Lp = 20 mm

Lr = 32 mm

Lc = 50 mm w = 3.5 mm

Pressure
transducersInlet Outlet

Pyrex

Silicon

H

k

(a)

(b)

Figure 2. Microchannels with a periodically rough surface and a smooth surface.
(a) Longitudinal section; (b) transverse section.
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Figure 3. Micrograph of the microchannel rough side etched in silicon.

2. Experiments
2.1. Periodically rough surfaces

Micro mechanical technologies were used to build two test sections with the same
design (figure 2). The microchannel walls were composed of a rough side with period-
ically distributed elements and a parallel smooth side. The rough wall was obtained by
deep reactive ion etching. A silicon wafer was etched at a depth k using a mask repro-
ducing the design of the roughness arrangement. The resulting blocks on the rough
wall were parallelepipeds of height k and side length d ( = 8 µm) placed in a staggered
arrangement with a wavelength L of 16 µm in both the streamwise and spanwise
directions (figure 3). The microchannel height H was obtained by chemically etching
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Figure 4. Poiseuille number for the semirough and the smooth microchannels.

a Pyrex plate at the depth H – k. Two cylindrical holes were made in the Pyrex plate for
hydraulic connections. The wafer and the Pyrex cover were then anodically bounded
to ensure the watertightness of the microchannel. The two microchannels investigated
were 3.5 mm in width and 50 mm in length. The roughness height k was equal to 8.6 µm
and 10.6 µm for the like microchannel height H equal to 106.8 µm and 153.6 µm giving
the relative roughness (k∗ = k/0.5H ) equal to 0.16 and 0.14, respectively. Note that k∗

is normalized with H/2 and not with the hydraulic diameter as in other studies. The
two microchannels were tested with demineralized water in a closed-loop circuit, which
included a pump (Movichrom N CN 3/12, 10 bars, 20 l min−1), a 1 µm filter, three
flowmeters (Kobold PEL L45, L01, Bronkhorst LFM L2, range 6 l min−1, 0.2 l min−1

and 0.017 l min−1), two piezo resistive strain gauge transmitters (MBS 3000, 16 bars)
and two type K thermocouples for the determination of the inlet and outlet temperat-
ure. Details of the set-up can be found in Gao, Le Person & Favre-Marinet (2002). The
pressure drop was measured using two pressure taps placed on the Pyrex side of the
semi-rough part of the microchannel. The upstream pressure tap was located 15 mm
from the inlet. The experiments were also conducted with a smooth microchannel,
which was made by the same method as the semi-rough ones, except that the silicon
wafer was not etched over the microchannel surface. The flow in the microchannels is
characterized by the bulk velocity ub = ṁ/ρH , where ṁ is the mass flow rate per unit
length in the spanwise direction and ρ is the density. The Reynolds number is defined
by Re = 2ṁ/µ and the Poiseuille number represents the dimensionless pressure drop

Po = − 1

µ

dp

dx

2ρH 3

ṁ
, (1.1)

where µ is the dynamic fluid viscosity.
Results are given in figure 4, which shows the following.
(i) Po is independent of Re in the laminar regime (Re < 2000) both for the smooth

and the semi-rough microchannels.
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Figure 5. Microchannels with randomly distributed roughness (a) Longitudinal section;
(b) transverse section A–A.

(ii) For the smooth microchannel, the experimental result for Po is in excellent
agreement with the theoretical law of Poiseuille flow between two parallel plates
(Po= 24). This confirms previous findings of our group (Gao et al. 2002; Bavière
et al. 2005) and others.

(iii) The results obtained for the two semi-rough microchannels collapse onto a
single curve. The pressure drop is significantly increased (about 20 %) for a relative
roughness of about 0.15.

(iv) The pressure drop suddenly increases when Re is higher than about 2000,
indicating transition to the turbulent regime. The increase in Po is faster than that
given by the Blasius law.

2.2. Randomly rough surfaces

Further experiments were conducted in rectangular microchannels obtained by
classical machining technology. The same test sections were used by Gao et al.
(2002) for their experiments on scale effects in hydrodynamic and heat transfer in
microchannels. The active channel walls were two smooth plane bronze blocks, which
were separated by a foil of thickness ef , with a hollowed out central part of width
w equal to 25 mm (figure 5). The two blocks were rounded off in the upstream part
so as to form a convergent channel entrance. They were hand-polished (arithmetical
roughness Ra < 0.1 µm). The thickness of the foil fixed the channel height H , which
could be varied in the range 0.1–1 mm by steps of 0.1 mm. The other dimensions
of the channel were the width w and the length Lc( = 82 mm). Two sumps were
machined in the working section at the channel inlet/outlet. Two pressure transducers
were flush mounted at the upstream/downstream sump walls. T-shaped connectors
were used to take pressure measurements with a differential inductive pressure gauge
(HBW PD1/0.1 bars). The circuit described in the previous section was used to test
the microchannels. After a first series of hydrodynamic measurements performed with
the smooth walls, the test section was roughened.

The surface roughening consisted of an electrochemical deposition of a nickel (Ni)
layer of thickness 2 µm (±0.5 µm), together with small silicon carbide (SiC) particles
(5 to 7 µm in diameter), on the two channel walls. A mask was used during the electro-
deposition process to prevent the roughening of the surfaces supporting the foils.
The two resulting Ni + SiC films were dried with a 10 bars nitrogen gas stream.
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Consequently, weakly anchored particles were removed before the series of
hydrodynamic measurements, leaving some holes in the nickel layers. A schematic
view of the transverse cross-section of a randomly rough microchannel is shown in
figure 5.

The sandwich structured arrangement allowed the channel height to be varied by
changing the thickness of the foil. The thickness of the different foils was measured
using a high-precision comparator (digital MITUTOYO 0.001 mm Micrometer) at
respective values of 100 µm (±1 µm), 200 µm (±1 µm) and 300 µm (±1 µm). For the
smooth case, the thickness of the foil gave the channel height H directly. For the
rough case, H was deduced from the foil thickness by subtracting the total thickness
of the electro-deposited nickel layers.

The rough surfaces were carefully analysed. In a first step, top-view numerical
photographs of the rough surfaces were taken through a Leica ×200 microscope
lens and analysed. The photos revealed black dots representing the SiC particles on
a light background corresponding to the nickel layer. The planar extension of the
dots typically ranged from 5 to 10 µm. The ratio of the surface occupied by the
black pixels to the total surface of the picture (90 µm × 120 µm) was estimated to be
about 37 %. This work was completed with a two-dimensional optical profilometer
(Hommel Somicronic probe with a 30 nm vertical resolution, a 2 µm planar resolution
and 100 mm axial course). The probe used for the measurements was chosen for
its low level of sensitivity regarding the physical nature of the material analysed.
The topography measurements were done at the end of the series of hydrodynamic
measurements in several different locations of the test section. The Ni + SiC rough
films were found to be transversally uniform throughout the whole width of the
channels (w = 25 mm). In each case, these measurements revealed well-marked step-
like profiles between the smooth bronze substrate and the rough Ni + SiC surfaces.
The nickel layer thickness was found to be 2 µm (±0.5 µm) for both sides. This
value is in good agreement with that deduced from the characteristics (time and
current intensity) of the electrochemical deposition. Another important result is that
for all the measurements, the maximum height between the nickel layer and the
top of a particle (parameter k on figure 5) was measured to be slightly over 5 µm.
Finally, the planar concentration of particles deduced from these measurements was
found to be in rough agreement with that obtained by the photo analysis. Summing
up, three foils of thickness 300, 200 and 100 µm were used for the measurements
giving the microchannel heights of 296 µm (±2 µm), 196 µm (±2 µm), and 96 µm
(±2 µm) with the relative roughness k∗ ranging from 0.04 to 0.12. The experiments
reported in this paper were repeated to verify their reproducibility. This is particularly
important for the channels with Ni + SiC surfaces for which the flow could have
removed particles. Fortunately, the tests have shown that the friction characteristics
were reproducible, which indirectly demonstrated the robustness of the particles
anchorage.

The measurements (figure 6) confirm the results found with periodic rough
microchannels. Again it is found that Po is independent of Re up to a transition
value of about 2000. A significant increase of Po with the relative roughness is also
found with this surface finish. These results will be interpreted in § 5.4.

3. Numerical model
Three-dimensional computations were conducted using a geometrical model similar

to that of the experiments with periodic rough walls (Gamrat et al. 2006). The



408 G. Gamrat, M. Favre-Marinet, S. Le Person, R. Bavière and F. Ayela

60

H = 296 µm

H = 169 µm

H = 96 µm

Po = 24

Blasius law
50

40Po

Re

30

20
100 1000

Figure 6. Poiseuille number for microchannels with randomly distributed roughness.
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Figure 7. Numerical model. Computational domain (hatched surface). (a) Aligned
arrangement; (b) staggered arrangement.

surface roughness consisted of blocks distributed on the smooth walls of a plane
microchannel of very large span w and height H (H � w). The roughness elements
were parallelepipeds of square cross-section of side length d as in the experiments.
They were periodically distributed either in aligned or staggered arrangements
(figure 7).

The present numerical model follows the details of that developed successively by
Hu et al. (2003) and Bavière et al. (2006). For this reason, only a rapid description of
the model is presented in the current paper. Owing to periodicity, the computation
domain extended over one wavelength in the streamwise (x) and spanwise (z)
directions and owing to symmetry, over the half-channel height in the direction
normal to the walls (y) (figure 8). A periodic boundary condition was written for
the velocity field at the inlet and outlet sides of the computation domain. Symmetry
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Figure 8. Numerical model. Three-dimensional view of the computational domain.

conditions were chosen at the lateral sides and the no-slip velocity condition at all
the solid boundaries.

Numerical computations of the flow were carried out by using the commercial
code Fluent 6.1.22. The equations were discretized by means of a second-order
upwind finite-volume method. A SIMPLEC (Semi Implicit Pressure Linked Equations
Consistent) algorithm was used for the computations. The accuracy and the grid
independence of the solution were carefully verified. Further details can be found in
Bavière et al. (2006). The results are presented later with those of the rough-layer
model presented in next section.

4. Rough-layer model
Koo & Kleinstreuer (2003, 2004) proposed that the roughness region could be

modelled by an equivalent porous medium layer adjacent to a clear fluid layer, namely
the central part of the channel. They modelled the additional viscous forces due to
rough elements in terms of the medium permeability and they used a nonlinear term
for accounting inertia forces. Bavière et al. (2006) used a discrete-element approach
initially proposed by Taylor, Coleman & Hodge (1985) to compute the rough-wall
skin friction in turbulent flows. They developed an analytical one-dimensional model
to compute the pressure drop in a microchannel. This part of the current study is an
extension of their work. The present rough-layer model (RLM) combines ideas from
the porous medium layer model of Koo & Kleinstreuer (2003) and from the approach
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of Taylor et al. (1985). The roughness layer is modelled by a periodical distribution of
discrete elements placed on a smooth bottom wall, as in the numerical model (§ 3). The
total resistance to the flow FT due to the pressure gradient acting on the inlet/outlet
microchannel cross-sections is balanced by the force Fvw due to friction at the smooth
bottom wall, the force Fvt due to friction at the top of the rough elements and the
drag force Fd on the rough elements. Bavière et al. (2006) analysed the contribution
of the three components to FT and showed that the contribution of Fvw decreases and
that of Fd increases rapidly when the roughness height is increased. The RLM model
directly accounts forFvw since it assumes the no-slip velocity condition at the smooth
bottom wall. The drag force is determined by the RLM model by modelling a drag
coefficient, while modelling the force Fvt constitutes the problem of the boundary
condition at the roughness layer/clear region interface. In the current study, we have
attempted to improve some aspects of Bavière et al. (2006), especially the interfacial
condition between the rough layer and the clear fluid layer and the modelling of the
drag coefficient of the roughness elements.

4.1. Momentum equation

The method of volume averaging was applied to derive the macroscopic momentum
equation in the rough layer (Taylor et al. 1985). The approach considers a control
volume (CV) of infinitesimal thickness in the direction normal to the wall (figure 8).
Since the structures are periodic, the extension of the CV is limited to one wavelength
λ in the x and z directions (λ= L or 2L for the aligned or staggered arrangements,
respectively). A plane parallel to the wall determines the cross-section s(y) on each
rough element (s(y) = d(y)2 for parallelepipedic or pyramidal elements, s(y) = πd(y)2/4
for conical elements, where d(y) is the local cross-section side length or diameter).
The local porosity is defined as the ratio of area open for flow to the total area

ε(y) = 1 − s(y)

L2
. (4.1)

The flow is supposed to be fully developed and is modelled as one-dimensional. In
the volume-averaging technique, two types of average velocity are commonly used as
in porous media (Whitaker 1986), namely the Darcy velocity uD(y) and the effective
velocity u(y) which are related by

uD(y) = u(y)ε(y). (4.2)

However, the Darcy velocity uD is more relevant than the effective velocity because
it is representative of the mass flow rate. Then, the local Reynolds number is
defined by

Red(y) =
ρuD(y)d

µ
. (4.3)

An integral formulation of the momentum equation is derived for the CV. The
equilibrium of the CV results from the competition between the pressure forces acting
on its upstream/downstream sides, the viscous shear stresses acting on its upper/lower
sides and the drag force due to the rough element (for details, see Bavière et al. 2006).
Periodicity allows us to decompose the pressure into a linear part and a periodic
component as in Croce & D’Agaro (2004)

p(x, y, z) =
dp

dx
x + p̃(x, y, z). (4.4)
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Applying this pressure decomposition, we can separate the pressure forces into
a contribution from the overall pressure gradient and from the periodic part p̃.
Considering this latter one, the drag force due to the portion of rough element
included in the CV is modelled by using a drag coefficient Cd

δFd = 1
2
µRedCduDδy. (4.5)

Cd represents the sum of a pressure coefficient associated to the periodical pressure
forces acting on the front and rear sides of the rough element: Cdp = �p̃/0.5ρu2

D where
�p̃ is the averaged pressure difference between these two sides and a friction factor
associated to the friction forces: Cdf =2τ/0.5ρu2

D where τ is the averaged wall shear
stress on the lateral sides of the rough element. The drag force due to the pressure
gradient component is regrouped with the pressure term in the momentum equation

−dp

dx
ε =

1

2L2
µRedCduD − µε

d2u

dy2
− µ

du

dy

dε

dy
. (4.6)

This equation has to merge with the momentum equation for the clear region

0 =
dp

dx
− µ

d2u

dy2
. (4.7)

For the case of parallelepipedic roughness elements, ε is independent of y so that the
second viscous term of (4.6) vanishes. This case will be discussed in more detail in § 4.3.

4.2. Drag coefficient modelling

In their model, Koo & Kleinstreuer (2004) introduced an ad hoc value of the perme-
ability in order to fit the experimental results of Guo & Li (2003). In the discrete-
element model, Taylor et al. (1985) introduced empirical correlations for the drag
force coefficient. However, these expressions relate the drag coefficient to the local
Reynolds number only and ignore other geometrical parameters such as the distance
between rough elements. This is a weakness of their method, as pointed out by Webb
(1994). After a first attempt to relate the drag coefficient to the roughness geometry
(Bavière et al. 2006), the current study was undertaken in order to improve the
estimation of this coefficient.

The three-dimensional numerical simulations described in the previous section were
used to compute the distribution of the drag coefficient Cd(y) along a parallelepipedic
roughness element as a function of the local Reynolds number for several values of
the geometrical parameters. Figure 9 shows that the drag coefficient Cd is inversely
proportional to Red . The proportionality factor Cr (Cr = CdRed , resistance coefficient
hereinafter) varies neither with the global Reynolds number Re nor with the relative
roughness height k∗ and mainly depends on the porosity ε. It is worth emphasizing
that this advantage results from applying the pressure decomposition as given by
(4.4). The overall pressure gradient is strongly dependent on the global structure of
the microchannel represented by the relative roughness, whereas the drag coefficient
Cd is directly dependent on the local velocity field and the local geometrical structure
of roughness.

For each series of computations, a slight increase of the resistance coefficient Cr

is observed for decreasing Red , namely towards the bottom wall. This increase may
be attributed to three-dimensional effects due to the rough element/bottom wall
interaction. Near the bottom wall, the velocity field between two rough elements
is strongly influenced by the bottom wall shear stress resulting in a higher friction
factor on the rough element sides. The thickness of the boundary layer on the
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Figure 9. Three-dimensional computations. Drag coefficient along a rough parallelepipedic
element vs. local Reynolds number. Aligned arrangement.

bottom wall increases with the porosity, thus for the case of large ε(=0.94) we can
expect intensification of this three-dimensional interaction. Figure 9 confirms that
the increase in Cr at low Red is more pronounced in this case. This increase is not,
however, of great importance for the global results of the model since it occurs
near the bottom wall where the contribution of drag forces is very small, as for
the velocity. We are then justified assuming that the resistance coefficient is constant
along the roughness element height. This suggests that we should model the drag
coefficient by means of two-dimensional numerical simulations of the flow across a
bank of rods instead of by computationally expensive three-dimensional simulations.
Such computations were then carried out for the aligned and staggered arrangements
of rods with square cross-section (Gamrat, Favre-Marinet & Le Person 2007). The
coefficient Cr was determined as a function of ε and Red . The following correlations
were obtained from these results by using a least-squares method.

Cr = [a1(1 − ε)n1exp(b1(1 − ε))] + [a2(1 − ε)n2exp(b2(1 − ε))]Red, (4.8)

with a1 = 52.2, b1 = 4.5, n1 = 0.27, a2 = 0.15, b2 = 2.13, n2 = –0.23 in the aligned
arrangement,

a1 = 62.2, b1 = 4.64, n1 = 0.28, a2 = 6.4, b2 = 0.9, n2 = –0.4 in the staggered arrange-
ment.

The pressure coefficient Cdp and the friction factor Cdf were distinguished. It was
found that Cdf contributes by 50 % (±5 %) to the total drag coefficient. Further com-
putations were carried out for banks of round tubes in the creeping-flow regime and
the results were found to be in excellent agreement with Martin, Saltiel & Shyy (1998).

4.3. Boundary conditions

After volume averaging, the problem of fluid flow in rough-wall microchannels
reduces to a second-order ordinary differential equation. Equation (4.6) can be solved
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numerically under appropriate boundary conditions. It was assumed that the velocity
is equal to zero at the bottom wall (y = 0) whereas symmetry boundary conditions were
used at the channel symmetry plane (y = 0.5H ). The formulation of the boundary
conditions at a homogeneous fluid/porous layer interface has been analysed by
several authors. The survey study of Alazmi & Vafai (2001) can be used as a reference
on this subject. For the discrete-element approach, the continuity of Darcy velocity
uD is satisfied in the whole computational domain. For conically shaped elements, the
continuity of the effective velocity u(y) and the shear stress can be prescribed without
restriction. A particular problem arises when cylindrical or prismatic elements are
considered. Bavière et al. (2006) assumed the continuity of the effective velocity
gradient at the clear fluid/porous layer interface. Because of the abrupt change of ε

at the interface, this assumption leads to discontinuity of the Darcy velocity gradient:

µ

ε

duD

dy

∣∣∣∣
k−

= µ
duD

dy

∣∣∣∣
k+

. (4.9)

However, a discontinuity of the effective velocity gradient is expected at the interface
owing to the development of velocity boundary layers on the rough-element top
surfaces. In the porous medium approach, Ochoa-Tapia & Whitaker (1995) also
introduced a jump condition in the stress at the interface after a careful examination
of the averaged continuity and momentum equations in a control volume located at
the interface.

In order to account for this discontinuity, the present model considers a control
volume CVN adjacent to the top of the rough elements. CVN is defined with the same
extension as CV (figure 8) in the x and z directions and by k � y � k + δy. The force
induced by the rough element on CVN is restricted to the viscous force at its top
horizontal surface. For the case of parallelepipedic roughness elements, the model
assumes that the boundary layers developing on the top surface and the lateral sides
in the top part of the rough element are similar. As a consequence, the shear stress
at the rough element top surface can be deduced from the average friction coefficient
Cdf on the lateral sides of the rough element. As explained before, this friction factor
is deduced from the two-dimensional simulations, like the average drag coefficient Cd .

Finally, the dimensionless system of equations is:

0 � y∗ � k∗, 0 =
εPo

8
− Cr

u∗
D

2L∗2
+

d2u∗
D

dy∗2
; (4.10a)

k∗ � y∗ � k∗ + δy∗, 0 =
Po

8
− Cdf Red

u∗
D

2L∗2

d∗

2δy∗ +
d2u∗

D

dy∗2
; (4.10b)

k∗ + δy∗ � y∗ � 1, 0 =
Po

8
+

d2u∗

dy∗2
; (4.10c)

where the lengths and velocities are normalized by H/2 and the bulk velocity ub,
respectively, and are denoted by the superscript ()*. Cr and Cdf are deduced from
the correlations (4.8). The presence of δy∗ in the second term of (4.10b) is due
to the resulting pressure force and viscous force in the momentum equation being
proportional to δy* whereas the viscous force on the top surface of the rough element
does not depend explicitly on δy*. Contrary to the case of (4.10a), the slide height
of the control volume is not eliminated in the momentum equation applied to CVN

leading to (4.10b).
The solution of system (4.10) depends on three dimensionless geometrical

parameters: the relative roughness height k∗, the porosity ε of the roughness region
and the ratio L∗2, which indicates the roughness structure fractionation (1/L∗2 is the
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number of rough elements in a square of side H/2). The term of the interaction
between the flow and the rough elements is inversely proportional to L∗2 so that a
high degree of fractionation of the rough elements for a given porosity is associated
to low values of L∗2, in other words to a high resistance of the rough layer to the
flow. Cr and ε are variable with y for non-cylindrical rough elements.

For the conically shaped rough elements, the system of equations is

0 � y∗ � k∗, 0 =
Po

8
ε − Cr

u∗
D

2L∗2
+

d2u∗
D

dy∗2
+

du

dy∗
dε

dy∗ ; (4.11a)

k∗ � y∗ � 1, 0 =
Po

8
+

d2u∗

dy∗2
. (4.11b)

The following boundary conditions are applied for both systems of equations

y∗ = 0, u∗
D = 0, (4.12a)

y∗ = k∗, u∗
D(k∗−) = u∗

D(k∗+), (4.12b)

y∗ = k∗,
du∗

D

dy

∣∣∣∣
k∗|−

=
du∗

D

dy

∣∣∣∣
k∗|+

, (4.12c)

y∗ = 1,
du∗

dy∗ = 0. (4.12d)

For the case of parallelepipedic rough elements, the following boundary condition is
added to the system:

y∗ = k∗+δy∗, u∗
D(k∗+δy∗| ) = u∗

D(k∗+δy∗|+), (4.13a)

y∗ = k∗ + δy∗,
du∗

D

dy

∣∣∣∣
k∗+δy∗|−

=
du∗

D

dy

∣∣∣∣
k∗+δy∗|+

. (4.13b)

The systems of equations (4.10) and (4.11) were discretized and solved by means of a
first-order-finite difference method using the software Matlab. Because of the strong
variations of velocity in the normal direction, the rough layer was typically discretized
in about 100 slices and the extra layer (k∗ � y∗ � k∗ + δy∗) in 5 slices.

5. Numerical results and comparison with experiments
5.1. Parallelepipedic roughness elements

The RLM model was applied to a rough microchannel with periodically distributed
parallelepipedic elements. The geometry was the same as in the numerical model
(figure 8). The influence of the thickness δy of the CVN on the numerical results
was found to be negligible. In fact, the Poiseuille number varied by ±1 % when the
normalized thickness δy* was changed from 0.002 to 0.02. Figure 10 shows velocity
profiles obtained with the RLM model at constant mass flow rate for three different
values of the relative rough element heights k∗ while the porosity and L∗2 were kept
constant (ε = 0.75, 1/L∗2 = 1.56). The Poiseuille profile is shown for comparison. As
expected, the velocity profiles depend strongly on k∗. For this choice of parameters
and for moderate values of the roughness height (k∗ � 0.4), the velocity profiles
exhibit a nearly linear part in the rough layer. A very high value of k∗ (= 0.8)
has been considered. It corresponds to the case of a heat exchanger with pin fins
and not to a rough wall. In this case, the flow in the rough layer is nearly two-
dimensional, except very near the wall, where the velocity profile has to match the
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Figure 10. Dimensionless velocity profiles at constant mass flow rate. 1/L∗2 = 1.56,
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Figure 11. Poiseuille number vs. relative roughness height. Comparison between the
rough-layer model and the three-dimensional numerical simulations. 1/L∗2 = 1.56.

no-slip velocity condition for y = 0. The velocity profile for k∗ = 0.2 is compared with
the three-dimensional numerical solution, showing excellent agreement between the
two approaches.

Figure 11 presents the Poiseuille number as a function of the relative roughness
height for three different values of the porosity. The ratio 1/L∗2 was kept constant to
1.56. On the same figure, we have drawn Pomax , which corresponds to the Poiseuille



416 G. Gamrat, M. Favre-Marinet, S. Le Person, R. Bavière and F. Ayela

1.0

0.8

0.6

0.4

0.2

0.5 1.0

k/L

keff

1.5

RLM k* = 0.075

RLM k* = 0.160

RLM k* = 0.300

EXP k* = 0.160

EXP k* = 0.140
Stroock et al. (2000) k/L < 1/π

Stroock et al. (2000) k/L >> 1/π, c = 056

c = 0.4

2.00

k

Figure 12. Effective roughness height. Comparison between the rough-layer model, the
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flow computed with the reduced flow passage H − 2k (Pomax = Posmooth(H/H − 2k)3,
Posmooth = 24). The RLM model and the three-dimensional numerical simulations are
again in excellent agreement to show a regular increase of Po with k∗. As expected,
smaller values of porosity cause higher increase of Po. These results are also in good
agreement with those of Hu et al. (2003) as shown in Bavière et al. (2006).

The results may also be presented by using an effective roughness height keff , as
in the analysis of Stroock et al. (2002) or equivalently, a penetration depth (k – keff )
of the driving shear into the rough layer. For a given flow rate, keff defines the flat
surface where the no-slip condition must be satisfied by the Stokes flow in order
to give the same Po as the actual rough-wall flow. The analysis of the flow over a
two-dimensional sinusoidally modulated surface by Stroock et al. suggests plotting
keff /k as a function of the local parameter k/L. Figure 12 shows that the results
collapse onto a single curve with this normalization when the relative roughness k∗

is varied, ε being kept constant. Moreover, the results are almost identical for the
aligned and staggered arrangements (highest difference of about 5 % for small k/L).
For ε = 0.75, the side length of a rough element is equal to the distance between
two successive elements, so that it is tempting to compare the actual results to those
corresponding to a sinusoidally modulated surface. The asymptotic trends indicated
by Stroock et al. for small-amplitude modulation of the wall compared to the channel
height are shown in figure 12. With the present notation, they correspond to

k/L< 1/π,
keff

k
=

1

2

(
1 + π

k

L

)
, (4.14)

k/L � 1/π,
keff

k
= 1 − c

2π

L

k
. (4.15)

The results obtained with parallelepipedic rough elements are below the theoretical
curve drawn for large wavelengths (equation (4.14)). This is obviously due to the
three-dimensional structure of the rough layer which reduces the interactions with
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the flow compared to the two-dimensional situation of the theory when the rough
elements are sparsely distributed. The curve corresponding to k/L � 1/π has been
plotted with the value (c =0.56) originally given by Hocking (1976) quoted by Stroock
et al. For a dense pattern of parallelepipedic elements, their shape obviously limits the
penetration depth of the driving shear into the rough layer compared to a sinusoidally
modulated surface and this effect is opposed to the previous one. This may explain
why the present results are above the curve drawn with c = 0.56. It is striking that
the present results are in very good agreement with (4.15) used with c = 0.4 not only
for moderate values of k/L, but also for values of k/L as low as 0.2.

For this geometry of roughness, a direct comparison with our experiments (§ 2.1)
is possible. We verified that keff /k as given by the RLM model is not sensitive to
the boundary condition on the opposite channel wall (smooth or rough). A good
agreement is found between the experimental results and the predictions of the RLM
model (figure 12) which, however, seems to underestimate the pressure drop slightly.
Unfortunately, the model’s results were not known when the test section was built.
Figure 12 shows that the value of keff /k is only 5–10 % less than 1 for the experimental
values of ε (=0.75) and other parameters, so that the rough layer is then not far from
being impermeable to the flow. It follows that the numerical results are probably not
very sensitive to the model assumptions for these experimental flow conditions. Other
experiments with higher values of ε and lower values of k/L are desirable to confirm
the validation of the model and are planned for the near future.

5.2. Conical roughness elements

The RLM model was applied to a rough microchannel with periodically distributed
conical elements (base diameter d0, height k). The results are compared with the
three-dimensional numerical simulations of Croce et al. (2005). As mentioned before,
we assumed that the drag coefficient could be estimated on the basis of the two-
dimensional simulations, thus neglecting three-dimensional aspects of the flow. The
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following comparison aims at testing this assumption and finding the range of RLM
model application. For conical elements, the porosity varies from its minimal value ε0

at the bottom wall to unity at the rough/clear interface. The relative roughness height
k∗ was kept constant at 0.106 in the computations. The conclusions of the previous
section, however, suggest that the results are not sensitive to this parameter. The
same presentation as for parallelepipedic rough elements was adopted in figure 13.
The abscissa is related to the cone slope (γ = d0/2k) by k/L =

√
1 − ε0/2γ . The RLM

predictions are compared with the results of Croce et al. (2005). As expected, the
penetration depth of the driving shear into the rough layer is much larger than
for parallelepipedic rough elements (smallest values of keff /k). The two models agree,
showing that the roughness effect is stronger for more compact roughness, i.e. for small
values of ε0. This effect is, however, less pronounced than for parallelepipedic rough
elements. The RLM model and the numerical simulations of Croce et al. (2005) are in
good general agreement, especially for the steeper cones (largest values of k/L at given
ε0). This slender shape is obviously favourable to the estimation of the drag coefficient
by the two-dimensional modelling used in the RLM model. For a milder cone slope
(smallest values of k/L), the RLM model underestimates the roughness impact.

5.3. Pin fins

The RLM model used in the current study can be easily adapted to predict the pressure
drop in heat exchangers where extended surfaces such as pin fins are used. In the
model, the periodically arranged roughness may be considered as the distribution of
micro pin fins in a heat exchanger. Kosar, Mishra & Peles (2005) measured the pressure
drop in a micro heat exchanger with pin fins and zero tip clearance (k = 0.5H ). In
other words, the pin fins occupied the whole channel height in their test-section. The
authors built microchannels 100 µm in depth etched in a silicon wafer. The pin fins
were circular cylinders 50 or 100 µm in diameter d and 100 µm in length, placed
transversely to the flow. Since the diameter d is close to the channel height, three-
dimensional interactions between the pins and the channel walls (endwall effects) are
expected in these experiments. Three different configurations of circular fins giving
the same porosity (ε = 0.65) are presented. The fins are distributed in the aligned
(4ICL – according to the nomenclature of Kosar et al.: H/d =1, 1/L∗2 = 0.11) or
staggered (2SCL: H/d = 1, 1/L∗2 = 0.11, 3SCS: H/d = 2, 1/L∗2 = 0.44) arrangement.
The results of Kosar et al. have been normalized as in the present work and plotted
in figure 14 for comparison with the RLM model. The model predictions generally
compare well with the behaviour of the experimental results for the highest values
of Re. The decrease of the experimental Po number when Re is increased remains
unexplained. This effect could be due to experimental uncertainties. Both experimental
results and the RLM model confirm that the resistance to the flow is increased with
the number of fins (higher values of 1/L∗2) for given ε. For the small fin diameter
case (3SCS), 1/L∗2 is four times higher than for the large fin diameter case (2SCL).
However, the Poiseuille number calculated by the RLM model is only about 3.35 times
higher than for the 2SCL case. This is probably due to enhanced three-dimensional
endwall effects for this latter case. The resistance to the flow is slightly higher (about
14 %) for the staggered arrangement (2SCL) than for the aligned one (4ICL).

5.4. Randomly rough surfaces

Because of the randomness of the surface roughness presented in the second series
of experiments (§ 2.2), it was not possible to model precisely the drag forces in the
rough region. The RLM model then constitutes an approximation of the physical
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Figure 14. Micro heat exchanger with pin fins. Comparison with Kosar et al. ε = 0.65.

situation since the real surface roughness has to be replaced by an ordered array of
elements in this model. Topographical measurements supply the information about
the geometrical parameters of roughness. The most important parameters are the
thickness of the Ni layer, the roughness height above this layer and the distance
between rough elements. The thickness of the Ni layer determines the location of
the smooth bottom wall (as in the experimental procedure). The height of roughness
elements was assumed to be equal to 6 µm since the size of SiC particles was 5–
7 µm. The porosity at the smooth bottom walls (ε0 = 0.63) was set on the basis of the
microscope observation as described in § 2.2. It implies that for a roughness element
size of 6 µm, the average spacing between two rows or columns is equal to 9.9 µm.
The RLM model was run with the above values of the parameters for the case of
parallelepipedic rough elements in a staggered arrangement. The numerical results
are plotted in figure 15. The three experimental points correspond to the plateau of
figure 6 and collapse onto a single point in this representation. The error bars have
been determined with the extreme values of k: 5–7 µm. The uncertainty is very high,
especially on the ordinate, which combines uncertainties on keff and k. The results of
Stroock et al.’s analysis are drawn as in figure 12. The constant c (equation (4.15))
has been adjusted to the RLM results.

Figure 15 shows that the RLM model is consistent with the experimental results. It
seems therefore that the prismatic shape of the rough elements is relevant to the actual
surface finish of the test section. It may be remarked that the randomly distributed
roughness is characterized by a rather low value of porosity. The very high values of
1/L∗2 (23.7 – 225 for H = 96 – 296 µm) correspond to k/L > 0.5 in the present case.
As a result of this set of parameters, the penetration depth recorded experimentally
and predicted by the RLM model (when run with parallelepipeds) is very small. In
other words, the pressure drop may be computed with a good approximation by using
the reduced flow passage H – 2k in these conditions. It may also be remarked that
the real roughness is not uniformly distributed as was observed on the photographs
of the surface, which is another source of uncertainty. The arrangement of SiC
particles could have formed dead-end paths, resulting in a substantial decrease of the
permeability of the rough layer and subsequent increase of the pressure drop.
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6. Conclusions
Three different approaches were used in the present study to predict the influence

of roughness on laminar flow in microchannels. Experimental investigations were
conducted with rough microchannels 100–300 µm in height. The roughness effect
was characterized in test sections prepared with well-controlled wall roughness
(periodically distributed blocks, relative roughness ≈ 0.15) and in test sections with
randomly distributed particles 5–7 µm in size anchored on the channel walls (relative
roughness ≈ 0.04–0.13). Three-dimensional numerical simulations were conducted
with the same geometry as in the test section with periodical roughness. A one-
dimensional model (RLM model) was also developed on the basis of a discrete-
element approach and the volume-averaging technique. The closure problem of this
semi-empirical model consisted in the determination of the drag coefficient of the
rough elements as a function of the geometrical parameters of roughness. The three-
dimensional numerical simulations revealed that this drag coefficient is constant
along the roughness element height. As a result, it was obtained by means of a
two-dimensional numerical modelling of the flow across banks of rods or tubes. The
RLM model was applied with a jump condition for the shear stress at the clear/rough
region interface.

The three approaches were applied to microchannels with periodically rough
surfaces. The numerical simulations, the RLM model and the experiments agree,
showing that the Poiseuille number Po increases with the relative roughness and is
independent of Re in the laminar regime (Re < 2000). The increase in Po observed
during the experiments is predicted well both by the three-dimensional simulations
and the RLM model.

The analysis revealed that the roughness effect may be interpreted by using an
effective roughness height keff for this simplified situation. This parameter defines the
flat surface where the no-slip condition must be satisfied by the channel Stokes flow
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in order to give the same Po as the actual rough-wall flow. When normalized with
the actual roughness height, it depends on two dimensionless local parameters: the
porosity at the bottom wall; and the roughness height normalized with the distance
between the rough elements. The RLM model shows that keff /k is independent of
the relative roughness k∗ at given k/L and may be approximated simply by the law:
keff /k = 1− (c(ε)/2π)(L/k) for keff /k > 0.2. The constant c decreases with the porosity.
The results of the RLM model are in good agreement with the three-dimensional
numerical simulations of Croce et al. (2005) for walls with conical rough elements.
When the model is used for a microchannel with pin fins, a fair agreement is found
with Kosar et al. (2005).

For the microchannels with randomly distributed roughness investigated in the
present work, the experimental Poiseuille number was found to be close to Pomax

corresponding to the model of a reduced flow area mentioned above. Although the
topography of the rough wall was well-characterized, the roughness effect was difficult
to model because uncertainties remain such as the shape of the rough microstructures
and the inhomogeneities of their distribution. The present analysis suggests that
modelling the roughness structure by periodically distributed parallelepipedic elements
is relevant to the actual surface finish.

A final remark concerns the scale effect in microchannels with rough walls. The
models presented in this paper did not introduce any physical micro-effect, except for
that due to roughness. It means that the results of the numerical simulations and of
the RLM model are independent of the channel height, which is used as the length
scale to normalize the various dimensions of the rough elements. The good agreement
with the experimental results indicates that this assumption is valid for microchannels
with height larger than about 100 µm. It is worth emphasizing that the roughness
effects studied in the present work are expected especially in microchannels where a
significant level of relative roughness can be obtained in some devices owing to the
small size of the microsystems.
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